76 Types of Resistance Training
Dawn Markell and Diane Peterson
Types of Resistance Training
Each type of resistance training benefits muscles in a different way. While these types of resistance training are not new, they could be unique sources of resistance that you have not considered in your quest to add muscle to your frame. Using these forms of resistance alone, in combination with one another, or in combination with the more traditional resistance apparatus, can enable you to diversify your efforts to produce valuable and improved results.
In each type of training, you may use an apparatus to create an environment for resistance. The uniqueness of these sources is found in the way they are implemented. You might use a dumbbell for a particular exercise in some of these alternative resistance methods, but the way you use the resistance through a range of motion may be altogether different.
1. Dynamic Constant Training
As the name suggests, the most distinctive feature of dynamic constant training (DCT) is that the resistance is constant. A good example of DCT occurs when you use free weights or machines that do not alter resistance, but redirect it instead. The emphasis shifts to different planes along the muscle group being worked. When you work on a shoulder-press machine, for example, the resistance remains constant over the entire range of motion. It is identical from the bottom of the movement to the top and back down again. Only the direction of the resistance varies. The resistance redirects itself through the arc and then redirects itself again when the shoulders let the weight come back down to the starting position.
2. Dynamic Progressive Training
In dynamic progressive training (DPT), resistance increases progressively as you continue to exercise. DPT is often used as a rehabilitative measure and offers the sort of resistance that builds gradually while remaining completely within the control of the person using it. Equipment includes rubber bands and tubing, springs, and an apparatus controlled by spring-loaded parts. They are low-cost items that are easily accessible and can be used anywhere. Though commonly employed for rehabilitation of torn ligaments, joints, muscles, and broken bones, it is also convenient for travelers on either vacation or business trips. When combined with traditional forms of resistance, this training creates a better-balanced program and provides the muscles with a welcome alternative from time to time.
3. Dynamic Variable Training
This form of resistance exercise takes up where dynamic constant training leaves off. Whereas DCT employs constant resistance, never varying to accommodate the body’s mechanics, DVT can be adapted to the varying degrees of strength of a muscle group throughout a range of motion. Some specialized machines use the DVT principle most effectively by allowing user to increase resistance at the beginning, middle or end of the range of motion. If your joints are stronger at the end of a movement (the top) or the beginning (the bottom), you can set the resistance accordingly.
4. Isokinetic Training
In isokinetic training (IKT), the muscle is contracted at a constant tempo. Speed determines the nature of this resistance training, not the resistance itself; however, the training is based on movement carried out during a condition of resistance. IKT can be performed with the body’s own weight.
In isokinetic training, resistance is steady while velocity remains constant. For example, isokinetics are at work with any machine that is hydraulically operated. The opposing forces mirror each other throughout the range of motion. A good example would be pressing down for triceps on a hydraulic machine and having to immediately pull up (the resistance is constant in both directions) into a biceps curl while maintaining the same speed. IKT often involves opposing body parts. Trainers can use a variety of apparatus with their clients to achieve isokinetic stasis between muscle groups.
5. Isometric Training
Familiar to most people, isometric training (IMT) is an excellent way to build strength with little adverse effect on joints and tendons commonly associated with strength training and lifting heavy weights. Though it appears simple in comparison to traditional resistance training, IMT should not be underrated in its effectiveness. IMT is a method in which the force of contraction is equal to the force of resistance. The muscle neither lengthens nor shortens. You may be wondering how any training occurs without lengthening and shortening the muscles. In IMT, the muscles act against each other or against an immovable object.
Isometric training is used when performing planks or wall sits. Another common IMT exercise is pressing the hands together to strengthen the pectorals and biceps. Isometric training has been proven very effective for gaining strength, but this method usually strengthens only the muscles at the point of the isometric contraction. If the greatest resistance and force are acting upon the mid-portion of the biceps, that is where most of the benefit will occur.
6. Isotonic Training
This method demands constant tension, typically with free weights. Though this approach may sound a lot like dynamic constant training, it differs because it does not necessarily redirect the resistance through a range of motion, but rather, keeps tension constant as in the negative portion of an exercise. Complete immobility of the muscle being worked is required. For example, in the preacher curl, the biceps are fixed against the bench. They lift (positive), then release the weight slowly downward (negative), keeping the same tension on the muscles in both directions. This is one reason that free-weight exercise is considered the best form of isotonic training. Merely lifting a dumbbell or barbell, however, is not necessarily enough to qualify as isotonic. The true essence of isotonic training is keeping resistance constant in both the positive and negative portions of each repetition.
Dawn Markell & Diane Peterson, Health and Fitness for Life. MHCC Library Press. Sept 4, 2019. https://mhcc.pressbooks.pub/hpe295