7 Divisions of the Skeletal Muscles

Author: Steven Telleen


Naming Skeletal Muscles

The Greeks and Romans conducted the first studies done on the human body in Western culture. The educated class of subsequent societies studied Latin and Greek, and therefore the early pioneers of anatomy continued to apply Latin and Greek terminology or roots when they named the skeletal muscles. The large number of muscles in the body and unfamiliar words can make learning the names of the muscles in the body seem daunting, but understanding the etymology can help. Etymology is the study of how the root of a particular word entered a language and how the use of the word evolved over time. Taking the time to learn the root of the words is crucial to understanding the vocabulary of anatomy and physiology. When you understand the names of muscles it will help you remember where the muscles are located and what they do (FigureFigure, and Table). Pronunciation of words and terms will take a bit of time to master, but after you have some basic information; the correct names and pronunciations will become easier.

Overview of the Muscular System

The top panel shows the anterior view of the human body with the major muscles labeled. The bottom panel shows the posterior view of the human body with the major muscles labeled.

On the anterior and posterior views of the muscular system above, superficial muscles (those at the surface) are shown on the right side of the body while deep muscles (those underneath the superficial muscles) are shown on the left half of the body. For the legs, superficial muscles are shown in the anterior view while the posterior view shows both superficial and deep muscles.
Understanding a Muscle Name from the Latin

This table shows two examples of muscle names and how to translate them based on their Latin roots. The first row uses abductor digiti minimi as an example. The word abductor comes from the Latin roots ab, which means away from, and duct, which means to move. Therefore an abductor is a muscle that moves away from something. The word digiti comes from the Latin root digititus, which means digit and refers to a finger or toe. The word minimi comes from the Latin root minimus, which means minimum, tiny, or little. Therefore, the abductor digiti minimi is a muscle that moves the little finger or toe away. The second row uses the adductor digiti minimi as an example. The word adductor comes from the Latin root ad, which means to or toward, and duct, which means to move. Therefore an adductor is a muscle that moves toward something. As with the abductor digiti minimi, digiti refers to a finger or toe and minimi refers to something that is little. Therefore the adductor digiti minimi is a muscle that moves the little finger or toe forward.

Mnemonic Device for Latin Roots
Example Latin or Greek Translation Mnemonic Device
ad to; toward ADvance toward your goal
ab away from n/a
sub under SUBmarines move under water.
ductor something that moves A conDUCTOR makes a train move.
anti against If you are antisocial, you are against engaging in social activities.
epi on top of n/a
apo to the side of n/a
longissimus longest “Longissimus” is longer than the word “long.”
longus long long
brevis short brief
maximus large max
medius medium “Medius” and “medium” both begin with “med.”
minimus tiny; little mini
rectus straight To RECTify a situation is to straighten it out.
multi many If something is MULTIcolored, it has many colors.
uni one A UNIcorn has one horn.
bi/di two If a ring is DIcast, it is made of two metals.
tri three TRIple the amount of money is three times as much.
quad four QUADruplets are four children born at one birth.
externus outside EXternal
internus inside INternal

Anatomists name the skeletal muscles according to a number of criteria, each of which describes the muscle in some way. These include naming the muscle after its shape, its size compared to other muscles in the area, its location in the body or the location of its attachments to the skeleton, how many origins it has, or its action.

The skeletal muscle’s anatomical location or its relationship to a particular bone often determines its name. For example, the frontalis muscle is located on top of the frontal bone of the skull. Similarly, the shapes of some muscles are very distinctive and the names, such as orbicularis, reflect the shape. For the buttocks, the size of the muscles influences the names: gluteus maximus (largest), gluteus medius (medium), and the gluteus minimus (smallest). Names were given to indicate length—brevis (short), longus (long)—and to identify position relative to the midline: lateralis (to the outside away from the midline), and medialis (toward the midline). The direction of the muscle fibers and fascicles are used to describe muscles relative to the midline, such as the rectus (straight) abdominis, or the oblique (at an angle) muscles of the abdomen.

Some muscle names indicate the number of muscles in a group. One example of this is the quadriceps, a group of four muscles located on the anterior (front) thigh. Other muscle names can provide information as to how many origins a particular muscle has, such as the biceps brachii. The prefix bi indicates that the muscle has two origins and tri indicates three origins.

The location of a muscle’s attachment can also appear in its name. When the name of a muscle is based on the attachments, the origin is always named first. For instance, the sternocleidomastoid muscle of the neck has a dual origin on the sternum (sterno) and clavicle (cleido), and it inserts on the mastoid process of the temporal bone. The last feature by which to name a muscle is its action. When muscles are named for the movement they produce, one can find action words in their name. Some examples are flexor (decreases the angle at the joint), extensor (increases the angle at the joint), abductor (moves the bone away from the midline), or adductor (moves the bone toward the midline).

Muscles That Move the Head

The head, attached to the top of the vertebral column, is balanced, moved, and rotated by the neck muscles (Table). When these muscles act unilaterally, the head rotates. When they contract bilaterally, the head flexes or extends. The major muscle that laterally flexes and rotates the head is the sternocleidomastoid. In addition, both muscles working together are the flexors of the head. Place your fingers on both sides of the neck and turn your head to the left and to the right. You will feel the movement originate there. This muscle divides the neck into anterior and posterior triangles when viewed from the side (Figure).

Posterior and Lateral Views of the Neck

The left panel shows the lateral view of the neck. The middle panel shows the superficial neck muscles, and the right panel shows the deep neck musclesThe superficial and deep muscles of the neck are responsible for moving the head, cervical vertebrae, and scapulas.

 

Muscles That Move the Head
Movement Target Target motion direction Prime mover Origin Insertion
Rotates and tilts head to the side; tilts head forward Skull; vertebrae Individually: rotates head to opposite side; bilaterally: flexion Sternocleidomastoid Sternum; clavicle Temporal bone (mastoid process); occipital bone
Rotates and tilts head backward Skull; vertebrae Individually: laterally flexes and rotates head to same side; bilaterally: extension Semispinalis capitis Transverse and articular processes of cervical and thoracic vertebra Occipital bone
Rotates and tilts head to the side; tilts head backward Skull; vertebrae Individually: laterally flexes and rotates head to same side; bilaterally: extension Splenius capitis Spinous processes of cervical and thoracic vertebra Temporal bone (mastoid process); occipital bone
Rotates and tilts head to the side; tilts head backward Skull; vertebrae Individually: laterally flexes and rotates head to same side; bilaterally: extension Longissimus capitis Transverse and articular processes of cervical and thoracic vertebra Temporal bone (mastoid process)

Muscles of the Posterior Neck and the Back

The posterior muscles of the neck are primarily concerned with head movements, like extension. The back muscles stabilize and move the vertebral column, and are grouped according to the lengths and direction of the fascicles.

The splenius muscles originate at the midline and run laterally and superiorly to their insertions. From the sides and the back of the neck, the splenius capitis inserts onto the head region, and the splenius cervicis extends onto the cervical region. These muscles can extend the head, laterally flex it, and rotate it (Figure).

Muscles of the Neck and Back

The top left panel shows a lateral view of the muscles of the neck, and the bottom left panel shows the posterior view of the superficial and deep muscles of the neck. The center panel shows the deep muscles of the back, and the right panel shows the deep spinal muscles.The large, complex muscles of the neck and back move the head, shoulders, and vertebral column.

 

The erector spinae group forms the majority of the muscle mass of the back and it is the primary extensor of the vertebral column. It controls flexion, lateral flexion, and rotation of the vertebral column, and maintains the lumbar curve. The erector spinae comprises the iliocostalis (laterally placed) group, the longissimus (intermediately placed) group, and the spinalis (medially placed) group.

The iliocostalis group includes the iliocostalis cervicis, associated with the cervical region; the iliocostalis thoracis, associated with the thoracic region; and the iliocostalis lumborum, associated with the lumbar region. The three muscles of the longissimus group are the longissimus capitis, associated with the head region; the longissimus cervicis, associated with the cervical region; and the longissimus thoracis, associated with the thoracic region. The third group, the spinalis group, comprises the spinalis capitis (head region), the spinalis cervicis (cervical region), and the spinalis thoracis (thoracic region).

The transversospinales muscles run from the transverse processes to the spinous processes of the vertebrae. Similar to the erector spinae muscles, the semispinalis muscles in this group are named for the areas of the body with which they are associated. The semispinalis muscles include the semispinalis capitis, the semispinalis cervicis, and the semispinalis thoracis. The multifidus muscle of the lumbar region helps extend and laterally flex the vertebral column.

Important in the stabilization of the vertebral column is the segmental muscle group, which includes the interspinales and intertransversarii muscles. These muscles bring together the spinous and transverse processes of each consecutive vertebra. Finally, the scalene muscles work together to flex, laterally flex, and rotate the head. They also contribute to deep inhalation. The scalene muscles include the anterior scalene muscle (anterior to the middle scalene), the middle scalene muscle (the longest, intermediate between the anterior and posterior scalenes), and the posterior scalene muscle (the smallest, posterior to the middle scalene).

Axial Muscles

It is a complex job to balance the body on two feet and walk upright. The muscles of the vertebral column, thorax, and abdominal wall extend, flex, and stabilize different parts of the body’s trunk. The deep muscles of the core of the body help maintain posture as well as carry out other functions. The brain sends out electrical impulses to these various muscle groups to control posture by alternate contraction and relaxation. This is necessary so that no single muscle group becomes fatigued too quickly. If any one group fails to function, body posture will be compromised.

Muscles of the Abdomen

There are four pairs of abdominal muscles that cover the anterior and lateral abdominal region and meet at the anterior midline. These muscles of the anterolateral abdominal wall can be divided into four groups: the external obliques, the internal obliques, the transversus abdominis, and the rectus abdominis (Figure and Table).

Muscles of the Abdomen

The top panel shows the lateral view of the superficial and deep abdominal muscles. The bottom panel shows the anterior view of the posterior abdominal muscles.

(a) The anterior abdominal muscles include the medially located rectus abdominis, which is covered by a sheet of connective tissue called the rectus sheath. On the flanks of the body, medial to the rectus abdominis, the abdominal wall is composed of three layers. The external oblique muscles form the superficial layer, while the internal oblique muscles form the middle layer, and the transverses abdominus forms the deepest layer. (b) The muscles of the lower back move the lumbar spine but also assist in femur movements.
Muscles of the Abdomen
Movement Target Target motion direction Prime mover Origin Insertion
Twisting at waist; also bending to the side Vertebral column Supination; lateral flexion External obliques; internal obliques Ribs 5–12; ilium Ribs 7–10; linea alba; ilium
Squeezing abdomen during forceful exhalations, defecation, urination, and childbirth Abdominal cavity Compression Transversus abdominus Ilium; ribs 5–10 Sternum; linea alba; pubis
Sitting up Vertebral column Flexion Rectus abdominis Pubis Sternum; ribs 5 and 7
Bending to the side Vertebral column Lateral flexion Quadratus lumborum Ilium; ribs 5–10 Rib 12; vertebrae L1–L4

There are three flat skeletal muscles in the antero-lateral wall of the abdomen. The external oblique, closest to the surface, extend inferiorly and medially, in the direction of sliding one’s four fingers into pants pockets. Perpendicular to it is the intermediate internal oblique, extending superiorly and medially, the direction the thumbs usually go when the other fingers are in the pants pocket. The deep muscle, the transversus abdominis, is arranged transversely around the abdomen, similar to the front of a belt on a pair of pants. This arrangement of three bands of muscles in different orientations allows various movements and rotations of the trunk. The three layers of muscle also help to protect the internal abdominal organs in an area where there is no bone.

The linea alba is a white, fibrous band that is made of the bilateral rectus sheaths that join at the anterior midline of the body. These enclose the rectus abdominis muscles (a pair of long, linear muscles, commonly called the “sit-up” muscles) that originate at the pubic crest and symphysis, and extend the length of the body’s trunk. Each muscle is segmented by three transverse bands of collagen fibers called the tendinous intersections. This results in the look of “six-pack abs,” as each segment hypertrophies on individuals at the gym who do many sit-ups.

The posterior abdominal wall is formed by the lumbar vertebrae, parts of the ilia of the hip bones, psoas major and iliacus muscles, and quadratus lumborum muscle. This part of the core plays a key role in stabilizing the rest of the body and maintaining posture.

The Intercostal Muscles

There are three sets of muscles, called intercostal muscles, which span each of the intercostal spaces. The principal role of the intercostal muscles is to assist in breathing by changing the dimensions of the rib cage (Figure).

Intercostal Muscles

This figure shows the muscles in the thorax. The left panel shows the ribs, the major bones, and the muscles connecting them. The right panel shows a magnified view of the sternum and labels the muscles.

The external intercostals are located laterally on the sides of the body. The internal intercostals are located medially near the sternum. The innermost intercostals are located deep to both the internal and external intercostals.

 

The 11 pairs of superficial external intercostal muscles aid in inspiration of air during breathing because when they contract, they raise the rib cage, which expands it. The 11 pairs of internal intercostal muscles, just under the externals, are used for expiration because they draw the ribs together to constrict the rib cage. The innermost intercostal muscles are the deepest, and they act as synergists for the action of the internal intercostals.

Muscles of the Upper Extremity

Muscles That Position the Pectoral Girdle

Muscles that position the pectoral girdle are located either on the anterior thorax or on the posterior thorax (Figure and Table). The anterior muscles include the subclaviuspectoralis minor, and serratus anterior. The posterior muscles include the trapeziusrhomboid major, and rhomboid minor. When the rhomboids are contracted, your scapula moves medially, which can pull the shoulder and upper limb posteriorly.

Muscles That Position the Pectoral Girdle

The left panel shows the anterior lateral view of the pectoral girdle muscle, and the right panel shows the posterior view of the pectoral girdle muscle.

The muscles that stabilize the pectoral girdle make it a steady base on which other muscles can move the arm. Note that the pectoralis major and deltoid, which move the humerus, are cut here to show the deeper positioning muscles.

 

Muscles that Position the Pectoral Girdle
Position in the thorax Movement Target Target motion direction Prime mover Origin Insertion
Anterior thorax Stabilizes clavicle during movement by depressing it Clavicle Depression Subclavius First rib Inferior surface of clavicle
Anterior thorax Rotates shoulder anteriorly (throwing motion); assists with inhalation Scapula; ribs Scapula: depresses; ribs: elevates Pectoralis minor Anterior surfaces of certain ribs (2–4 or 3–5) Coracoid process of scapula
Anterior thorax Moves arm from side of body to front of body; assists with inhalation Scapula; ribs Scapula: protracts; ribs: elevates Serratus anterior Muscle slips from certain ribs (1–8 or 1–9) Anterior surface of vertebral border of scapula
Posterior thorax Elevates shoulders (shrugging); pulls shoulder blades together; tilts head backwards Scapula; cervical spine Scapula: rotests inferiorly, retracts, elevates, and depresses; spine: extends Trapezius Skull; vertebral column Acromion and spine of scapula; clavicle
Posterior thorax Stabilizes scapula during pectoral girdle movement Scapula Retracts; rotates inferiorly Rhomboid major Thoracic vertebrae (T2–T5) Medial border of scapula
Posterior thorax Stabilizes scapula during pectoral girdle movement Scapula Retracts; rotates inferiorly Rhomboid minor Cervical and thoracic vertebrae (C7 and T1) Medial border of scapula

Muscles That Move the Humerus

Similar to the muscles that position the pectoral girdle, muscles that cross the shoulder joint and move the humerus bone of the arm include both axial and scapular muscles (Figure and Figure). The two axial muscles are the pectoralis major and the latissimus dorsi. The pectoralis major is thick and fan-shaped, covering much of the superior portion of the anterior thorax. The broad, triangular latissimus dorsi is located on the inferior part of the back, where it inserts into a thick connective tissue shealth called an aponeurosis.

Muscles That Move the Humerus

The top left panel shows the lateral view of the pectoral and back muscles. The top right panel shows the posterior view of the right deltoid and the left back muscle. The bottom left panel shows the anterior view of the deep muscles of the left shoulder, and the bottom right panel shows the deep muscles of the left shoulder.(a, c) The muscles that move the humerus anteriorly are generally located on the anterior side of the body and originate from the sternum (e.g., pectoralis major) or the anterior side of the scapula (e.g., subscapularis). (b) The muscles that move the humerus superiorly generally originate from the superior surfaces of the scapula and/or the clavicle (e.g., deltoids). The muscles that move the humerus inferiorly generally originate from middle or lower back (e.g., latissiumus dorsi). (d) The muscles that move the humerus posteriorly are generally located on the posterior side of the body and insert into the scapula (e.g., infraspinatus).

 

Muscles That Move the Humerus

This table describes the muscles that move the humerus. The pectoralis major is an axial muscle that brings the elbows together and moves the elbows up (as during an uppercut punch). It originates in the clavicle, sternum, cartilage of ribs 1 through 6 or 1 through 7, and the aponeurosis of the external oblique muscle. The latissimus dorsi is an axial muscle that moves the elbow back (as in elbowing someone standing behind you) or spreads the elbows apart. It originates in the thoracic vertebrae (T7 through T12), the lower vertebrae, ribs 9 through 12, and the iliac crest. The deltoid is a scapular muscle that lifts arms at the shoulder. It originates in the trapezius, clavicle, acromion, and spine of scapula. The subscapularis is a scapular muscle that assists the pectoralis major in bringing the elbows together and stabilizes the shoulder joint during movement of the pectoral girdle. It originates in the subscapular fossa of the scapula. The supraspinatus is a scapular muscle that rotates the elbow outwards, as during a tennis swing. It originates in the supraspinous fossa of the scapula. The infraspinatus is a scapular muscle that rotates the elbow outwards, as during a tennis swing. It originates in the infraspinous fossa of the scapula. The teres major is a scapular muscle that assists the infraspinatus in rotating the elbow outwards. It originates in the posterior surface of the scapula. The teres minor is a scapular muscle that assists the infraspinatus in rotating the elbow outwards. It originates in the lateral border of the dorsal scapular surface. The coracobra chialis is a scapular muscle that moves the elbow up and across the body, as when putting a hand on the chest. It originates in the coracoid process of the scapula.

The rest of the shoulder muscles originate on the scapula. The anatomical and ligamental structure of the shoulder joint and the arrangements of the muscles covering it, allows the arm to carry out different types of movements. The deltoid, the thick muscle that creates the rounded lines of the shoulder is the major abductor of the arm, but it also facilitates flexing and medial rotation, as well as extension and lateral rotation. The subscapularis originates on the anterior scapula and medially rotates the arm. Named for their locations, the supraspinatus (superior to the spine of the scapula) and the infraspinatus (inferior to the spine of the scapula) abduct the arm, and laterally rotate the arm, respectively. The thick and flat teres major is inferior to the teres minor and extends the arm, and assists in adduction and medial rotation of it. The long teres minor laterally rotates and extends the arm. Finally, the coracobrachialis flexes and adducts the arm.

The tendons of the deep subscapularis, supraspinatus, infraspinatus, and teres minor connect the scapula to the humerus, forming the rotator cuff (musculotendinous cuff), the circle of tendons around the shoulder joint. When baseball pitchers undergo shoulder surgery it is usually on the rotator cuff, which becomes pinched and inflamed, and may tear away from the bone due to the repetitive motion of bring the arm overhead to throw a fast pitch.

Muscles That Move the Forearm

The forearm, made of the radius and ulna bones, has four main types of action at the hinge of the elbow joint: flexion, extension, pronation, and supination. The forearm flexors include the biceps brachii, brachialis, and brachioradialis. The extensors are the triceps brachii and anconeus. The pronators are the pronator teres and the pronator quadratus, and the supinator is the only one that turns the forearm anteriorly. When the forearm faces anteriorly, it is supinated. When the forearm faces posteriorly, it is pronated.

The biceps brachii, brachialis, and brachioradialis flex the forearm. The two-headed biceps brachii crosses the shoulder and elbow joints to flex the forearm, also taking part in supinating the forearm at the radioulnar joints and flexing the arm at the shoulder joint. Deep to the biceps brachii, the brachialis provides additional power in flexing the forearm. Finally, the brachioradialis can flex the forearm quickly or help lift a load slowly. These muscles and their associated blood vessels and nerves form the anterior compartment of the arm (anterior flexor compartment of the arm) (Figure and Figure).

Muscles That Move the Forearm

This multipart figure shows the different muscles that move the forearm. The major muscle groups are labeled.The muscles originating in the upper arm flex, extend, pronate, and supinate the forearm. The muscles originating in the forearm move the wrists, hands, and fingers.

 

Muscles That Move the Forearm

This table describes the muscles that move the forearm. The biceps brachii are anterior muscles that perform a bicep curl; they also allow the palm of the hand to point toward the body while flexing. They originate in the coracoid process and the tubercle above the glenoid cavity. The brachialis originates in the front of the distal humerus. The brachioradialis is an anterior muscle that assists and stablizes the elbow during bicep-curl motion. It originates in the lateral supracondylar ridge at the distal end of the humerus. The triceps brachii are posterior muscles that extend the forearm, as during a punch. They originate in the infraglenoid tubercle of the scapula, the posterior shaft of the humerus, and the posterior humeral shaft distal to the radial groove. The aconeus is a posterior muscle that assists in extending the forearm; it also allows the forearm to extend away from the body. It originates in the lateral epicondyle of the humerus. The pronator teres is an anterior muscle that turns the hand palm-down. It originates in the medial epicondyle of the humerus and the coronoid process of the ulna. The pronator quadratus is an anterior muscle that assists in turning the hand palm-down. It originates in the distal portion of the anterior ulnar shaft. The supinator is a posterior muscle that turns the hand palm-down. It originates in the lateral epicondyle of the humerus and the proximal ulna.

Muscles That Move the Wrist, Hand, and Fingers

Wrist, hand, and finger movements are facilitated by two groups of muscles. The forearm is the origin of the extrinsic muscles of the hand. The palm is the origin of the intrinsic muscles of the hand.

Muscles of the Arm That Move the Wrists, Hands, and Fingers

The muscles in the anterior compartment of the forearm (anterior flexor compartment of the forearm) originate on the humerus and insert onto different parts of the hand. These make up the bulk of the forearm. From lateral to medial, the superficial anterior compartment of the forearm includes the flexor carpi radialispalmaris longusflexor carpi ulnaris, and flexor digitorum superficialis. The flexor digitorum superficialis flexes the hand as well as the digits at the knuckles, which allows for rapid finger movements, as in typing or playing a musical instrument (see Figure and Table). However, poor ergonomics can irritate the tendons of these muscles as they slide back and forth with the carpal tunnel of the anterior wrist and pinch the median nerve, which also travels through the tunnel, causing Carpal Tunnel Syndrome. The deep anterior compartment produces flexion and bends fingers to make a fist. These are the flexor pollicis longus and the flexor digitorum profundus.

The muscles in the superficial posterior compartment of the forearm (superficial posterior extensor compartment of the forearm) originate on the humerus. These are the extensor radialis longusextensor carpi radialis brevisextensor digitorumextensor digiti minimi, and the extensor carpi ulnaris.

The muscles of the deep posterior compartment of the forearm (deep posterior extensor compartment of the forearm) originate on the radius and ulna. These include the abductor pollicis longusextensor pollicis brevisextensor pollicis longus, and extensor indicis (see Figure).

Muscles That Move the Wrist, Hands, and Forearm

This table describes the muscles that move the wrist, hands, and forearm. These muscles make up the superficial anterior compartment of the forearm. The flexor carpi radialis bends the wrist toward the body; it also tilts the hand to the side away from the body. It originates in the medial epicondyle of the humerus. The palmaris longus assists in bending the hand up toward the shoulder. It originates in the medial epicondyle of the humerus. The flexor carpi ulnaris assists in bending the hand up toward the shoulder; it also tilts the hand to the side away from the body and stabilizes the wrist. It originates in the medial epicondyle of the humerus, the olecranon process, and the posterior surface of the ulna. The flexor digitorum superficialis bends the fingers to make a fist. It originates in the medial epicondyle of the humerus, the coronoid process of the ulna, and the shaft of the radius. These muscles make up the deep anterior compartment of the forearm. The flexor pollicis longus bends the tip of the thumb. It originates in the anterior surface of the radius and the interosseous membrane. The flexor digitorum profundus bends the fingers to make a fist; it also bends the wrist toward the body. It originates in the coronoid process, the anteromedial surface of the ulna, and the interosseous membrane. These muscles make up the superficial posterior compartment of the forearm. The extensor radialis longus straightens the wrist away from the body; it also tilts the hand to the side away from the body. It originates in the lateral supracondylar ridge of the humerus. The extensor carpi radialis brevis assists the extensor radialis longus in extending and abducting the wrist; it also stabilizes the hand during finger flexion. It originates in the lateral epicondyle of the humerus. The extensor digitorum opens the fingers and moves them sideways away from the body. It originates in the lateral epicondyle of the humerus. The extensor digiti minimi extends the little finger. It originates in the lateral epicondyle of the humerus. The extensor carpi ulnaris straightens the wrist away from the body; it also tilts the hand to the side toward the body. It originates in the lateral epicondyle of the humerus and the posterior of the ulna. These muscles make up the deep posterior compartment of the forearm. The abductor pollicis longus moves the thumb sideways toward the body; it also extends the thumb and moves the hand sideways toward the body. It originates in the posterior surface of the radius and ulna and in the interosseous membrane. The extensor pollicis brevis extends the thumb. It originates in the dorsal shaft of the radius and ulna and in the interosseous membrane. The extensor pollicis longus extends the thumb. It originates in the dorsal shaft of the radius and ulna and in the interosseous membrane. The extensor indicis extends the index finger; it also straightens the wrist away from the body. It originates in the posterior surface of the distal ulna and in the interosseous membrane.

The tendons of the forearm muscles attach to the wrist and extend into the hand. Fibrous bands called retinacula sheath the tendons at the wrist. The flexor retinaculum extends over the palmar surface of the hand while the extensor retinaculum extends over the dorsal surface of the hand.

Muscles of the Lower Extremity

The appendicular muscles of the lower body position and stabilize the pelvic girdle, which serves as a foundation for the lower limbs. Comparatively, there is much more movement at the pectoral girdle than at the pelvic girdle. There is very little movement of the pelvic girdle because of its connection with the sacrum at the base of the axial skeleton. The pelvic girdle is less range of motion because it was designed to stabilize and support the body.

Muscles of the Thigh

What would happen if the pelvic girdle, which attaches the lower limbs to the torso, were capable of the same range of motion as the pectoral girdle? For one thing, walking would expend more energy if the heads of the femurs were not secured in the acetabula of the pelvis. The body’s center of gravity is in the area of the pelvis. If the center of gravity were not to remain fixed, standing up would be difficult as well. Therefore, what the leg muscles lack in range of motion and versatility, they make up for in size and power, facilitating the body’s stabilization, posture, and movement.

Gluteal Region Muscles That Move the Femur

Most muscles that insert on the femur (the thigh bone) and move it, originate on the pelvic girdle. The psoas major and iliacus make up the iliopsoas group. Some of the largest and most powerful muscles in the body are the gluteal muscles or gluteal group. The gluteus maximus is the largest; deep to the gluteus maximus is the gluteus medius, and deep to the gluteus medius is the gluteus minimus, the smallest of the trio (Figure and Figure).

Hip and Thigh Muscles

The left panel shows the superficial pelvic and thigh muscles, the center panel shows the deep pelvic and thigh muscles. The right panel shows the posterior view of the pelvic and thigh muscles.The large and powerful muscles of the hip that move the femur generally originate on the pelvic girdle and insert into the femur. The muscles that move the lower leg typically originate on the femur and insert into the bones of the knee joint. The anterior muscles of the femur extend the lower leg but also aid in flexing the thigh. The posterior muscles of the femur flex the lower leg but also aid in extending the thigh. A combination of gluteal and thigh muscles also adduct, abduct, and rotate the thigh and lower leg.

 

Gluteal Region Muscles That Move the Femur

This table describes gluteal region muscles that move the femur. These muscles make up the iliopsoas group. The psoas major raises the knee at the hip, as if performing a knee attack; it also assists the lateral rotators in twisting the thigh (and lower leg) outward, and assists with bending over and maintaining posture. It originates in the lumbar vertebrae (L1 through L5) and thoracic vertebra (T12). The iliacus raises the knee at the hip, as if performing a knee attack; it also assists the lateral rotators in twisting the thigh (and lower leg) outward, and assists with bending over and maintaining posture. It originates in the iliac fossa, iliac crest, and lateral sacrum. These muscles make up the gluteal group. The gluteous maximus lowers the knee and moves the thigh back, as when getting ready to kick a ball. It originates in the dorsal ilium, sacrum, and coccyx. The gluteus medius opens the thigh, as when doing a split. It originates in the lateral surface of the ilium. The gluteus minimus brings the thighs back together. It originates in the external surface of the ilium. The tensor fascia lata assists with raising the knee at the hip and opening the thighs; it also maintains posture by stabilizing the iliotibial track, which connects to the knee. It originates in the anterior aspect of the iliac crest and the anterior superior iliac spine. These muscles make up the lateral rotators. The piriformis twists the thigh (and lower leg) outward; it also maintains posture by stabilizing the hip joint. It originates in the anterolateral surface of the sacrum. The obturator internus twists the thigh (and lower leg) outward; it also maintains posture by stabilizing the hip joint. It originates in the inner surface of the obturator membrane, the greater sciatic notch, and the margins of the obturator foramen. The superior gemellus twists the thigh (and lower leg) outward; it also maintains posture by stabilizing the hip joint. It originates in the ischial spine. The inferior gemellus twists the thigh (and lower leg) outward; it also maintains posture by stabilizing the hip joint. It originates in the ischial tuberosity. The quatratus femoris twists the thigh (and lower leg) outward; it also maints posture by stabilizing the hip joint. It originates in the ischial tuberosity. These muscles are adductors. The adductor longus brings the thighs back together; it also assists with raising the knee. It originates in the pubis near the pubic symphysis. The adductor brevis brings the thighs back together; it also assists with raising the knee. It originates in teh body of the pubis and in the inferior ramus of the pubis. The adductor magnus brings the thighs back together; it also assists with raising the knee and moving the thigh back. It originates in the ischial rami, the pubic rami, and the ischial tuberosity. The pectineus opens the thigh; it also assists with raising the knee and turning the thigh (and lower leg) inward. It originates in the pectineal line of the pubis.

The tensor fascia latae is a thick, squarish muscle in the superior aspect of the lateral thigh. It acts as a synergist of the gluteus medius and iliopsoas in flexing and abducting the thigh. It also helps stabilize the lateral aspect of the knee by pulling on the iliotibial tract (band), making it taut. Deep to the gluteus maximus, the piriformisobturator internus, obturator externussuperior gemellusinferior gemellus, and quadratus femoris laterally rotate the femur at the hip.

The adductor longusadductor brevis, and adductor magnus can both medially and laterally rotate the thigh depending on the placement of the foot. The adductor longus flexes the thigh, whereas the adductor magnus extends it. The pectineus adducts and flexes the femur at the hip as well. The pectineus is located in the femoral triangle, which is formed at the junction between the hip and the leg and also includes the femoral nerve, the femoral artery, the femoral vein, and the deep inguinal lymph nodes.

Thigh Muscles That Move the Femur, Tibia, and Fibula

Deep fascia in the thigh separates it into medial, anterior, and posterior compartments (see Figure and Figure). The muscles in the medial compartment of the thigh are responsible for adducting the femur at the hip. Along with the adductor longus, adductor brevis, adductor magnus, and pectineus, the strap-like gracilis adducts the thigh in addition to flexing the leg at the knee.

Thigh Muscles That Move the Femur, Tibia, and Fibula

This table describes the thigh muscles that move the femur, tibia, and fibula. The medial compartment of the thigh consists of the gracilis, which moves the back of the lower legs up toward the buttocks, as when kneeling; it also assists in opening the thighs. It originates in the inferior ramus, the body of the pubis, and the ischial ramus. These muscles, the quadriceps femoris group, make up the anterior compartment of the thigh. The rectus femoris moves the lower leg out in front of the body, as when kicking; it also assists in raising the knee. It originates in the anterior inferior iliac spine and in the superior margin of the acetabulum. The vastus lateralis moves the lower leg out in front of the body, as when kicking. It originates in the greater trochanter, the intertrochanteric line, and the linea aspera. The vastus medialis moves the lower leg out in front of the body, as when kicking. It originates in the linea aspera and the intertrochanteric line. The vastus intermedius moves the lower leg out in front of the body, as when kicking. It originates in the proximal femur shaft. The sartorius moves the back of the lower legs up and back toward the buttocks, as when kneeling; it also assists in moving the thigh diagonally upward and outward as when mounting a bike. It originates in the anterior superior iliac spine. These muscles, the hamstring group, make up the posterior compartment of the thigh. The biceps femoris moves the back of the lower leg up and back toward the buttocks, as when kneeling; it also moves the thigh down and back and twists the thigh (and lower leg) outward. It originates in the ischial tuberosity, linea aspera, and distal femur. The semitendinosus moves the back of the lower legs up toward the buttocks, as when kneeling; it also moves the thigh down and back and twists the thigh (and lower leg) inward. It originates in the ischial tuberosity. The semi-membranosus moves the back of the lower legs up and back toward the buttocks, as when kneeling; it also moves the thigh down and back and twists the thigh (and lower leg) inward. It originates in the ischial tuberosity.

The muscles of the anterior compartment of the thigh flex the thigh and extend the leg. This compartment contains the quadriceps femoris group, which actually comprises four muscles that extend and stabilize the knee. The rectus femoris is on the anterior aspect of the thigh, the vastus lateralis is on the lateral aspect of the thigh, the vastus medialis is on the medial aspect of the thigh, and the vastus intermedius is between the vastus lateralis and vastus medialis and deep to the rectus femoris. The tendon common to all four is the quadriceps tendon (patellar tendon), which inserts into the patella and continues below it as the patellar ligament. The patellar ligament attaches to the tibial tuberosity. In addition to the quadriceps femoris, the sartorius is a band-like muscle that extends from the anterior superior iliac spine to the medial side of the proximal tibia. This versatile muscle flexes the leg at the knee and flexes, abducts, and laterally rotates the leg at the hip. This muscle allows us to sit cross-legged.

The posterior compartment of the thigh includes muscles that flex the leg and extend the thigh. The three long muscles on the back of the knee are the hamstring group, which flexes the knee. These are the biceps femorissemitendinosus, and semimembranosus. The tendons of these muscles form the popliteal fossa, the diamond-shaped space at the back of the knee.

Muscles That Move the Feet and Toes

Similar to the thigh muscles, the muscles of the leg are divided by deep fascia into compartments, although the leg has three: anterior, lateral, and posterior (Figure and Figure).

Muscles of the Lower Leg

The left panel shows the superficial muscles that move the feet and the center panel shows the posterior view of the same muscles. The right panel shows the deep muscles of the right lower leg.The muscles of the anterior compartment of the lower leg are generally responsible for dorsiflexion, and the muscles of the posterior compartment of the lower leg are generally responsible for plantar flexion. The lateral and medial muscles in both compartments invert, evert, and rotate the foot.

 

Muscles That Move the Feet and Toes

This tables describes the muscles that move the feet and toes. These muscles make up the anterior compartment of the leg. The tibialis anterior raises the sole of the foot off the ground, as when preparing to foot-tap; it also bends the inside of the foot upwards, as when catching your balance while falling laterally toward the opposite side as the balancing foot. It originates in the lateral condyle and upper tibial shaft and in the interosseous membrane. The extensor hallucis longus raises the sole of the foot off the ground, as when preparing to foot-tap; it also extends the big toe. It originates in the anteromedial fibula shaft and interosseous membrane. The extensor digitorum longus raises the sole of the foot off the ground, as when preparing to foot-tap; it also extends the toes. It originates in the lateral condyle of the tibia, the proximal portion of the fibula, and the interosseous membrane. These muscles make up the lateral compartment of the leg. The fibularis longus lowers the sole of the foot to the ground, as when foot-tapping or jumping; it also bends the inside of the foot downwards, as when catching your balance while falling laterally toward the same side as the balancing foot. It originates in the upper portion of the lateral fibula. The fibularis (peroneus) brevis lowers the side of the foot to the ground, as when foot-tapping or jumping; it also bends the inside of the foot downward, as when catching your balance while falling laterally toward the same side as the balancing foot. It originates in the distal fibula shaft. These superficial muscles make up the posterior compartment of the leg. The gastrocnemius lowers the sole of the foot to the ground, as when foot-tapping or jumping; it also assists in moving the back of the lower legs up and back toward the buttocks. It originates in the medial and lateral condyles of the femur. The soleus lowers the sole of the foot the ground, as when foot-tapping or jumping; it also maintains posture while walking. It originates in the superior tibia, fibula, and interosseous membrane. The plantaris lowers the sole of the foot to the ground, as when foot-tapping or jumping; it also assists in moving the back of the lower legs up and back toward the buttocks. It originates in the posterior femur above the lateral condyle. The tibialis posterior lowers the sole of the foot to the ground, as when foot-tapping or jumping. It originates in the superior tibia and fibula and in the interosseous membrane. These deep muscles also make up the posterior compartment of the leg. The popliteus moves the back of the lower legs up and back toward the buttocks; it also assists in rotation of the leg at the knee and thigh. It originates in the lateral condyle of the femur and the lateral meniscus. The flexor digitorum longus lowers the sole of the foot to the ground, as when foot-tapping or jumping; it also bends the inside of the foot upward and flexes the toes. It originates in the posterior tibia. The flexor hallicis longus flexes the big toe. It originates in the midshaft of the fibula and in the interosseous membrane.

The muscles in the anterior compartment of the leg: the tibialis anterior, a long and thick muscle on the lateral surface of the tibia, the extensor hallucis longus, deep under it, and the extensor digitorum longus, lateral to it, all contribute to raising the front of the foot when they contract. The fibularis tertius, a small muscle that originates on the anterior surface of the fibula, is associated with the extensor digitorum longus and sometimes fused to it, but is not present in all people. Thick bands of connective tissue called the superior extensor retinaculum (transverse ligament of the ankle) and the inferior extensor retinaculum, hold the tendons of these muscles in place during dorsiflexion.

The lateral compartment of the leg includes two muscles: the fibularis longus (peroneus longus) and the fibularis brevis (peroneus brevis). The superficial muscles in the posterior compartment of the leg all insert onto the calcaneal tendon (Achilles tendon), a strong tendon that inserts into the calcaneal bone of the ankle. The muscles in this compartment are large and strong and keep humans upright. The most superficial and visible muscle of the calf is the gastrocnemius. Deep to the gastrocnemius is the wide, flat soleus. The plantaris runs obliquely between the two; some people may have two of these muscles, whereas no plantaris is observed in about seven percent of other cadaver dissections. The plantaris tendon is a desirable substitute for the fascia lata in hernia repair, tendon transplants, and repair of ligaments. There are four deep muscles in the posterior compartment of the leg as well: the popliteusflexor digitorum longusflexor hallucis longus, and tibialis posterior.


Steven Telleen, Human Anatomy. OpenStax CNX. Apr 3, 2018. Download for free at http://cnx.org/contents/4effb4bf-fdbb-478f-be7b-ddcc60373b0f@6.24.

License

Icon for the Creative Commons Attribution 4.0 International License

Introduction to Exercise Science for Fitness Professionals Copyright © 2021 by Amanda Shelton is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book